2022 Lecture Topics

Each year the IDL presents a handful of topics to professional Architecture & Engineering firms. These topics cover a wide range of design and building applications such as energy modeling and daylighting. Topics are focused on helping a firm integrate energy efficiency practices into their projects and design process. Each presentation is about an hour with lunch provided. All in attendance will receive 1 AIA CEU as well as a certificate to verify attendance. The classes marked with (HSW) qualify for Health, Safety and Welfare credit. For a complete list of topics offered for lunch and learn visit idlboise.com If you are interested in scheduling one or two sessions for us to present at your firm you can fill out the form linked above or you may contact Dylan Agnes or Lyndsay Watkins. Thank you and we look forward to hearing from you.

LEED V4.1 Daylighting Credits

Description:

LEED Daylighting credits are one of the most difficult to achieve and requires an early investment for validation. However, investigating daylight opportunities for a project will assist in other aspects of energy efficiency, such as, estimating heating and cooling loads or integrating a building’s control systems. As such, any time spent in the early design phase investigating if a project should invest in daylighting is applicable to facets of energy efficient design that is often required for LEED projects. In this lecture we will discuss the changes from LEED V4 to V4.1 Daylighting Credits, which options work best for project types, incorporating early energy/simulation modeling into the design process, and how to run a cost-benefit analysis to determine if you should invest in daylighting.

ASHRAE Standard 209 - Energy Simulation-Aided Design

Description:

Learn about ASHRAE’s recommendations for energy simulation aided design. This lecture will cover methods of integrating modeling into the design process to meet aggressive energy savings targets. Learn how to implement load-reducing modeling cycles early in the design process. Quantify the energy impact of design decisions in real time. And, use post-occupancy modeling to enhance building performance. Whether trying to achieve LEED, tax credits, or efficiency incentives, energy modeling can help improve the bottom line for both designers and clients.

ASHRAE Standard 36 - High-Performance Sequences of Operation for HVAC Systems

Description:

The best equipment can still run terribly if it’s not controlled well – like a sports car in the hands of a clueless driver. Don’t let that happen to your design. Get the latest guidelines on sequences of operation for common HVAC sequences. Take advantage of Idaho Power’s incentives on HVAC energy management controls. Get a refresher proper start-up and shut down sequences for air handling units including VAVs, rooftop units, and heat pumps. Ensure that controls are in compliance with indoor air quality standards for ASHRAE 62.1 compliance and COVID mitigation. Participants will learn functional tests they can perform that can confirm that proper sequences are in place..

Daylighting Multipliers - Increasing Daylight Harvesting Efficiency

Description:

This session will explore the role that daylighting multipliers are used when trying to increase the efficiency of daylighting or daylight harvesting in a building, such as, light shelves, manufactured glazing, and material specification. Furthermore, we will explore the rate of return, the ranges of efficiency, and appropriate uses between daylighting strategies and multipliers.

OpenStudio - Parametric Analysis Tool

Description:

This session will cover the parametric analysis tool (PAT) within OpenStudio. PAT removes the need to hand edit each model to try out different architectural design, energy efficiency measures, or mechanical systems. Participants will learn the fundamental concepts of measure writing for OpenStudio, simulation parameters, running a simulation with PAT, and how firms can utilize this feature to inform early design decisions in regards to building performance.

Dedicated Outdoor Air Systems

Description:

In an effort to operate buildings in the most energy efficient manner, we are designing building envelopes to be as airtight as possible with as little outside air as allowable. In this presentation the following issues are addressed: significance of IAQ to human health and productivity, the link between IAQ and building energy demands, and efficient technologies for optimizing IAQ.

Luminaire Level Lighting Controls

Description:

LLLCs have sensors and controls within individual fixtures that enable them to be controlled remotely or on a case-by-case basis. Remote control allows users to adjust the programming criteria or illumination levels without replacing the fixtures. In conventional lighting systems, lighting zones are defined as a collective unit and thus are centrally controlled. LLLCs however, incorporate sensors into each fixture, such as occupancy, daylight, temperature or receive/broadcast signals. Each fixture has the potential to become a semi-autonomous zone that is capable of responding to small changes in the area under each fixture. Furthermore, individual fixtures can communicate with other fixtures, using wireless or infrared signals, to share data for an even greater potential to increase energy savings and user satisfaction. Some LLLCs can be connected by gateway to transfer information collected. This data is analyzed, usually through the manufacturer’s software, to provide a user interface different from a typical text editor. From there users are able to identify trends in occupancy and lighting energy consumption that can then be used to refine the building schedules for occupancy and lighting and, if applicable, for the buildings’ HVAC schedule programming.

Future of Lighting Controls

Description:

Although LEDs have shown, they are a big game changer in the commercial lighting realm; lower lighting power density is not the only area of value when considering lighting. We can further increase savings from these highly efficient lighting systems by introducing control systems that collect data and user input to create an evolving feedback loop that seeks peak system operation. While LLLC’s (Luminaire Level Lighting Control) use this feature, they still use the same infrastructure as the lighting and control system that have come before it, which can be a limitation for expanding the systems efficiency and integration to other building systems. We believe the internet of things (IoT) will change the lighting and controls industry, providing an excellent medium for an integrated, multi-service IoT platform. Why? Where there are people, there are lights; where there are people, there will also be the need for connectivity. New and connected lighting controls provide a means to deliver valuable IoT services and increased energy savings.

The Architect's Business Case For Energy Performance Modeling

Description:

Most of us think of energy modeling as an engineering exercise. The truth is that more models and simulations are performed, and to better result, if the architect understands when and how to support the process and how to utilize the output. A building energy model can provide the architect an iterative process to increase the real-world effectiveness of energy systems within a building. This session will explore the value-add of energy modeling from the architect’s perspective, providing a business case for more active involvement in avocation for energy performance modeling.

High Efficiency Heat Recovery

Description:

This session will cover the role that high efficiency HRV’s play in designing and specifying high-performing Dedicated Outdoor Air systems. Several recent northwest case studies have shown whole-building savings of 40 to 60% on existing building retrofits using DOAS with high efficiency heat recovery. The current code requirements of HRVs will be contrasted with the performance of new and emerging products. High efficiency HRV’s can have a high capital cost but can generate large energy savings with increased control of cooling and ventilation. Several economic models will be presented showing financial impacts of using high efficiency HRVs in a project.